Consulte os dados abaixo para calcular a 4ª média móvel


Médias móveis: quais são eles, entre os indicadores técnicos mais populares, as médias móveis são usadas para avaliar a direção da tendência atual. Todo tipo de média móvel (comumente escrito neste tutorial como MA) é um resultado matemático que é calculado pela média de um número de pontos de dados passados. Uma vez determinado, a média resultante é então plotada em um gráfico para permitir que os comerciantes vejam os dados suavizados, em vez de se concentrar nas flutuações de preços do dia a dia que são inerentes a todos os mercados financeiros. A forma mais simples de uma média móvel, apropriadamente conhecida como média móvel simples (SMA), é calculada tomando a média aritmética de um determinado conjunto de valores. Por exemplo, para calcular uma média móvel básica de 10 dias, você adicionaria os preços de fechamento dos últimos 10 dias e depois dividiria o resultado em 10. Na Figura 1, a soma dos preços nos últimos 10 dias (110) é Dividido pelo número de dias (10) para chegar à média de 10 dias. Se um comerciante deseja ver uma média de 50 dias, o mesmo tipo de cálculo seria feito, mas incluiria os preços nos últimos 50 dias. A média resultante abaixo (11) leva em conta os últimos 10 pontos de dados para dar aos comerciantes uma idéia de como um recurso tem um preço relativo aos últimos 10 dias. Talvez você esteja se perguntando por que os comerciantes técnicos chamam essa ferramenta de uma média móvel e não apenas um meio regular. A resposta é que, à medida que novos valores se tornam disponíveis, os pontos de dados mais antigos devem ser descartados do conjunto e novos pontos de dados devem vir para substituí-los. Assim, o conjunto de dados está constantemente em movimento para contabilizar os novos dados à medida que ele se torna disponível. Este método de cálculo garante que apenas as informações atuais estão sendo contabilizadas. Na Figura 2, uma vez que o novo valor de 5 é adicionado ao conjunto, a caixa vermelha (representando os últimos 10 pontos de dados) se move para a direita e o último valor de 15 é descartado do cálculo. Como o valor relativamente pequeno de 5 substitui o valor alto de 15, você esperaria ver a redução da média do conjunto de dados, o que faz, neste caso de 11 a 10. O que as médias móveis parecem Uma vez que os valores da MA foram calculados, eles são plotados em um gráfico e depois conectados para criar uma linha média móvel. Essas linhas curvas são comuns nos gráficos dos comerciantes técnicos, mas como eles são usados ​​podem variar drasticamente (mais sobre isso mais tarde). Como você pode ver na Figura 3, é possível adicionar mais de uma média móvel a qualquer gráfico ajustando o número de períodos de tempo usados ​​no cálculo. Essas linhas curvas podem parecer distrativas ou confusas no início, mas você se acostumará a elas com o passar do tempo. A linha vermelha é simplesmente o preço médio nos últimos 50 dias, enquanto a linha azul é o preço médio nos últimos 100 dias. Agora que você entende o que é uma média móvel e o que parece, bem, introduza um tipo diferente de média móvel e examine como isso difere da média móvel simples anteriormente mencionada. A média móvel simples é extremamente popular entre os comerciantes, mas, como todos os indicadores técnicos, tem seus críticos. Muitos indivíduos argumentam que a utilidade do SMA é limitada porque cada ponto na série de dados é ponderado o mesmo, independentemente de onde ele ocorre na seqüência. Os críticos argumentam que os dados mais recentes são mais significativos do que os dados mais antigos e devem ter uma maior influência no resultado final. Em resposta a esta crítica, os comerciantes começaram a dar mais peso aos dados recentes, que desde então levaram à invenção de vários tipos de novas médias, sendo a mais popular a média móvel exponencial (EMA). (Para leitura adicional, veja Noções básicas de médias móveis ponderadas e qual a diferença entre uma SMA e uma EMA) Média móvel exponencial A média móvel exponencial é um tipo de média móvel que dá mais peso aos preços recentes na tentativa de torná-lo mais responsivo Para novas informações. Aprender a equação um tanto complicada para calcular uma EMA pode ser desnecessária para muitos comerciantes, já que quase todos os pacotes de gráficos fazem os cálculos para você. No entanto, para você geeks de matemática lá fora, aqui está a equação EMA: Ao usar a fórmula para calcular o primeiro ponto da EMA, você pode notar que não há nenhum valor disponível para usar como EMA anterior. Este pequeno problema pode ser resolvido iniciando o cálculo com uma média móvel simples e continuando com a fórmula acima a partir daí. Nós fornecemos uma amostra de planilha que inclui exemplos da vida real de como calcular uma média móvel simples e uma média móvel exponencial. A Diferença entre o EMA e o SMA Agora que você tem uma melhor compreensão de como o SMA e o EMA são calculados, vamos dar uma olhada em como essas médias diferem. Ao analisar o cálculo da EMA, você notará que é dada mais ênfase aos pontos de dados recentes, tornando-se um tipo de média ponderada. Na Figura 5, o número de períodos de tempo utilizados em cada média é idêntico (15), mas a EMA responde mais rapidamente aos preços em mudança. Observe como o EMA tem um valor maior quando o preço está subindo e cai mais rápido que o SMA quando o preço está em declínio. Essa capacidade de resposta é a principal razão pela qual muitos comerciantes preferem usar o EMA sobre o SMA. O que os dias diferentes significam As médias em movimento são um indicador totalmente personalizável, o que significa que o usuário pode escolher livremente o período de tempo que deseja ao criar a média. Os períodos de tempo mais comuns usados ​​em médias móveis são 15, 20, 30, 50, 100 e 200 dias. Quanto menor o intervalo de tempo usado para criar a média, mais sensível será para as mudanças de preços. Quanto maior o período de tempo, menos sensível ou mais suavizado, a média será. Não há um marco de tempo certo para usar ao configurar suas médias móveis. A melhor maneira de descobrir qual é o melhor para você é experimentar vários períodos de tempo diferentes até encontrar um que se encaixa na sua estratégia. Médias móveis: Como usá-las Como calcular uma média móvel no Excel Uma média móvel é uma estatística usada para analisar partes de um grande conjunto de dados ao longo de um período de tempo. É comumente usado com preços de ações, retornos de estoque e dados econômicos, como o produto interno bruto ou os índices de preços ao consumidor. Usando o Microsoft Excel, você pode organizar e calcular médias móveis em poucos minutos, permitindo que você concentre mais tempo na análise real, em vez de construir a série de dados. Abra uma nova planilha no Microsoft Excel. Insira as datas e seus pontos de dados correspondentes em duas colunas. Por exemplo, para analisar os valores da receita mensal, insira todos os meses na coluna A e o índice de receita correspondente próximo a ele na coluna B. Um ano de dados, então, preencheria as células A1 a A12 e B1 até B12. Determine o intervalo de tempo da média móvel que deseja calcular, como uma média móvel de três meses ou seis meses. Vá para o último valor do primeiro intervalo e clique na célula vazia correspondente à direita. Usando o exemplo da Etapa 1, se você deseja calcular uma média móvel de três meses, você clicaria na célula C3 porque o B3 contém o último valor dos primeiros três meses do ano. Use a função MÉDIA e digite uma fórmula na célula vazia que você selecionou, especificando o intervalo de dados para o primeiro intervalo. Neste exemplo, você tipo quotAVERAGE (B1: B3) quot. Posicione o mouse no canto inferior direito da célula com a fórmula até ver um quot. quot Clique com o botão esquerdo e arraste a fórmula para a célula vazia ao lado do último ponto de dados na coluna adjacente. No exemplo acima, você arrasta a fórmula da célula C3 para a célula C12 para calcular a média móvel de três meses para o resto do ano. Escolhendo a melhor linha de tendência para seus dados Quando você deseja adicionar uma linha de tendência a um gráfico em Microsoft Graph, você pode escolher qualquer um dos seis diferentes tipos de configurações de tendências. O tipo de dados que você determina o tipo de linha de tendência que você deve usar. Confiabilidade Trendline Uma linha de tendência é mais confiável quando seu valor R-quadrado está em ou perto de 1. Quando você ajusta uma linha de tendência para seus dados, o Graph calcula automaticamente seu valor R-squared. Se desejar, você pode exibir esse valor no seu gráfico. Uma linha de tendência linear é uma linha reta de melhor ajuste que é usada com conjuntos de dados lineares simples. Seus dados são lineares se o padrão em seus pontos de dados se assemelhar a uma linha. Uma linha de tendência linear geralmente mostra que algo está aumentando ou diminuindo a uma taxa constante. No exemplo a seguir, uma linha de tendência linear mostra claramente que as vendas de refrigeradores aumentaram consistentemente ao longo de um período de 13 anos. Observe que o valor R-squared é 0.9036, que é um bom ajuste da linha para os dados. Uma linha de tendência logarítmica é uma linha curva de melhor ajuste que é mais útil quando a taxa de alteração nos dados aumenta ou diminui rapidamente e, em seguida, aumenta os níveis. Uma linha de tendência logarítmica pode usar valores negativos ou positivos. O exemplo a seguir usa uma linha de tendência logarítmica para ilustrar o crescimento populacional previsto de animais em uma área de espaço fixo, onde a população se estabilizou à medida que o espaço para os animais diminuiu. Observe que o valor R-squared é 0.9407, que é um ajuste relativamente bom da linha para os dados. Uma linha de tendência polinomial é uma linha curva que é usada quando os dados flutuam. É útil, por exemplo, analisar ganhos e perdas em um grande conjunto de dados. A ordem do polinômio pode ser determinada pelo número de flutuações nos dados ou por quantas curvas (colinas e vales) aparecem na curva. Uma linha de tendência polinomial da Ordem 2 geralmente tem apenas uma colina ou vale. A ordem 3 geralmente tem uma ou duas colinas ou vales. A ordem 4 geralmente tem até três. O exemplo a seguir mostra uma linha de tendência polinômica da ordem 2 (uma colina) para ilustrar a relação entre velocidade e consumo de gasolina. Observe que o valor R-squared é 0.9474, que é um bom ajuste da linha para os dados. Uma linha de tendência de energia é uma linha curva que é melhor usada com conjuntos de dados que comparam medidas que aumentam a uma taxa específica, por exemplo, a aceleração de um carro de corrida em intervalos de um segundo. Você não pode criar uma linha de tendência de energia se seus dados contiverem valores zero ou negativos. No exemplo a seguir, os dados de aceleração são mostrados ao plotar a distância em metros por segundos. A linha de tendência de energia demonstra claramente a crescente aceleração. Observe que o valor R-squared é 0.9923, que é um ajuste quase perfeito da linha para os dados. Uma linha de tendência exponencial é uma linha curvada que é mais útil quando os valores de dados aumentam ou caem a taxas cada vez maiores. Você não pode criar uma linha de tendência exponencial se seus dados contiverem valores zero ou negativos. No exemplo a seguir, uma linha de tendência exponencial é usada para ilustrar a quantidade decrescente de carbono 14 em um objeto à medida que envelhece. Observe que o valor R-squared é 1, o que significa que a linha se ajusta perfeitamente aos dados. Uma linha de tendência média móvel suaviza as flutuações nos dados para mostrar um padrão ou tendência com mais clareza. Uma linha de tendência média móvel usa um número específico de pontos de dados (definido pela opção Período), os em média e usa o valor médio como um ponto na linha de tendência. Se o Período for definido como 2, por exemplo, a média dos dois primeiros pontos de dados é usada como o primeiro ponto da linha de tendência média móvel. A média do segundo e terceiro pontos de dados é usada como o segundo ponto na linha de tendência, e assim por diante. No exemplo a seguir, uma linha de tendência média móvel mostra um padrão no número de casas vendidas ao longo de um período de 26 semanas.

Comments

Popular Posts